If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3^2+b^2=7^2
We move all terms to the left:
3^2+b^2-(7^2)=0
We add all the numbers together, and all the variables
b^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 8n-68=4 | | 10+a=44 | | 16x-3=-5 | | 8g=384 | | -2x-12-14=6 | | a^2+8.4^2=9.2^2 | | 21m=945 | | -3(x-13)-5=-20 | | 0,02*(-100+25x-x^2)=0 | | –3q+2=–16 | | a^2+2^2=8^2 | | 3x+5-(-2x)=10x+20 | | 15m-8m+4=18 | | 30=2j-4 | | 7^2+b^2=10^2 | | -x-17=32 | | 4k2+12k+8=0 | | (8)/(2z)=(15)/(60) | | 2+5m+2m=-12 | | -6u^2+3u=0 | | a^2+2.6^2=3.9^2 | | 8n=(8)^2 | | a^2+8^2=9^2 | | 2^2+b^2=3^2 | | 2(x-3)^2=2(x^2+9) | | -16=-n/19 | | 3(x+6)=2(2x-6) | | t/3-4=21 | | 7x+12+8x+18=90 | | x+6.1=12.2 | | 8n=(6+2)^2 | | 5(2x}x=3 |